行测3000问_公务员考试行测数学运算解题方法之方阵问题
大家好!今天让小编来大家介绍下关于行测3000问_公务员考试行测数学运算解题方法之方阵问题的问题,以下是小编对此问题的归纳整理,让我们一起来看看吧。
文章目录列表:
1.行测分数上不去怎么办?今年考试前5个月内练了3000多题,公务员考试分数只比去年高一点,而且今年好2.公务员考试行测数学运算解题方法之方阵问题
行测分数上不去怎么办?今年考试前5个月内练了3000多题,公务员考试分数只比去年高一点,而且今年好
1、首先,片段阅读是比较容易拿分的题型。考生只要准确的理解语意,就能够得到这部分的分数。有的同学会说,读不懂。那么,考生可能需要针对自身进行思考,是否有用心在读,读不懂是因为什么原因。总结了读不懂的原因,避免下一次再犯同样的错误。解决了读不懂的问题,如何在最后的一周里,提高片段阅读的做题能力呢,方法就是:最后一星期每天坚持做十个题目。
2、其次,判断推理题也是拿分的关键。判断推理题中的类比推理考察的是日常常识;定义判断也是考察我们的阅读理解能力,没有技术含量,没有复习的情况下,也应该可以拿分的。拿时间排序题来说,考生在没有复习的情况下,如果出5个题目,起码可以作对两到三个。
3、判断推理题目想要拿分,那么方法就是:多复习,做题目,找感觉。
4、逻辑推理题型,如果没有学习逻辑,考生就会掉进正常思维与逻辑思维不同的陷阱之中。如果考生想要提分,逻辑推理一定是重点。同学们只要经过认真的复习,十个题目有八道可以作对。
5、考生们在接触到图形推理题目时会觉得非常的难,看上去就晕。但其实它的规律是有限的。规律很简单。考生应该在一周的时间内快速的总结规律。数量关系中数字推理。
6、数字推理规律固定,与图形推理一样,利用规律就可以作对。是提分的亮点。
7、数学运算是大家头疼的地方。提高有难度。数学不同于其他科目,它是有技巧可言的。考生们可以通过平时的复习归纳出来题型,通过一定技巧,实行。
8、资料分析也是提分的亮点。资料分析题会有五个小题。其中的一到三个题目是不需要计算,直接判断可得答案。纵观考生中整个资料分析题型,会发现10—20个小题中,会有近10个题目可以直接在原文中找到答案。那么这部分分数不能丢。
9、中公教育专家建议,考生在复习中,每个部分都不能放弃,考生们通过平时做题,拿到基础分的同时, 在最后一周进行技巧、规律的归纳总结,就能够提高做题技巧拿到更多的分数。一个星期时间能够使考生在现有的基础上提高一定分数。基础+提高是硬道理。
公务员考试行测数学运算解题方法之方阵问题
《行政职业能力测验》中数量关系部分,有一类比较典型的题——抽屉问题。对许多公考学生来说,这个题型有一定的难度,因为很难通过算式的方式来将其量化。我们知道,公务员考试是测试一个人作为公务员应该具备的最基础的交流、沟通、判断、推理和计算能力。同样,数量关系测试的也不全是个人的运算能力,它更倾向于考察考生的理解和推理能力。抽屉问题就更为显著地贯彻了这一命题思路。
我们先来看三个例子:
(1)3个苹果放到2个抽屉里,那么一定有1个抽屉里至少有2个苹果。
(2)5块手帕分给4个小朋友,那么一定有1个小朋友至少拿了2块手帕。
(3)6只鸽子飞进5个鸽笼,那么一定有1个鸽笼至少飞进2只鸽子。
我们用列表法来证明例题(1):
放 法
抽 屉 ①种 ②种 ③种 ④种
第1个抽屉 3个 2个 1个 0个
第2个抽屉 0个 1个 2个 3个
从上表可以看出,将3个苹果放在2个抽屉里,共有4种不同的放法。
第①、②两种放法使得在第1个抽屉里,至少有2个苹果;第③、④两种放法使得在第2个抽屉里,至少有2个苹果。
即:可以肯定地说,3个苹果放到2个抽屉里,一定有1个抽屉里至少有2个苹果。
由上可以得出:
题 号 物 体 数 量 抽屉数 结 果
(1) 苹 果 3个 放入2个抽屉 有一个抽屉至少有2个苹果
(2) 手 帕 5块 分给4个人 有一人至少拿了2块手帕
(3) 鸽 子 6只 飞进5个笼子 有一个笼子至少飞进2只鸽
上面三个例子的共同特点是:物体个数比抽屉个数多一个,那么有一个抽屉至少有2个这样的物体。从而得出:
抽屉原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
再看下面的两个例子:
(4)把30个苹果放到6个抽屉中,问:是否存在这样一种放法,使每个抽屉中的苹果数都小于等于5?
(5)把30个以上的苹果放到6个抽屉中,问:是否存在这样一种放法,使每个抽屉中的苹果数都小于等于5?
解答:(4)存在这样的放法。即:每个抽屉中都放5个苹果;(5)不存在这样的放法。即:无论怎么放,都会找到一个抽屉,它里面至少有6个苹果。
从上述两例中我们还可以得到如下规律:
抽屉原理2:把多于m×n个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+l个的物体。
可以看出,“原理1”和“原理2”的区别是:“原理1”物体多,抽屉少,数量比较接近:“原理2”虽然也是物体多,抽屉少,但是数量相差较大,物体个数比抽屉个数的几倍还多几。
以上两个原理,就是我们解决抽屉问题的重要依据。抽屉问题可以简单归结为一句话:有多少个苹果,多少个抽屉,苹果和抽屉之间的关系。解此类问题的重点就是要找准“抽屉”,只有“抽屉”找准了,“苹果”才好放。
我们先从简单的问题入手:
(1)3只鸽子飞进了2个鸟巢,则总有1个鸟巢中至少有几只鸽子?(答案:2只)
(2)把3本书放进2个书架,则总有1个书架上至少放着几本书?(答案:2本)
(3)把3封信投进2个邮筒,则总有1个邮筒投进了不止几封信?(答案:1封)
(4)1000只鸽子飞进50个巢,无论怎么飞,我们一定能找到一个含鸽子最多的巢,它里面至少含有几只鸽子?(答案:1000÷50=20,所以答案为20只)
(5)从8个抽屉中拿出17个苹果,无论怎么拿。我们一定能找到一个拿苹果最多的抽屉,从它里面至少拿出了几个苹果?(答案:17÷8=2……1,2+1=3,所以答案为3)
(6)从几个抽屉中(填数)拿出25个苹果,才能保证一定能找到一个抽屉,从它当中至少拿了7个苹果?(答案:25÷□=6……□,可见除数为4,余数为1,抽屉数为4,所以答案为4个)
抽屉问题又称为鸟巢问题、书架问题或邮筒问题。如上面(1)、(2)、(3)题,讲的就是这些原理。上面(4)、(5)、(6)题的规律是:物体数比抽屉数的几倍还多几的情况,可用“苹果数”除以“抽屉数”,若余数不为零,则“答案”为商加1;若余数为零,则“答案”为商。其中第(6)题是已知“苹果数”和“答案”来求“抽屉数”。
抽屉问题的用处很广,如果能灵活运用,可以解决一些看上去相当复杂、觉得无从下手,实际上却是相当有趣的数学问题。
例1:某班共有13个同学,那么至少有几人是同月出生?( )
A. 13 B. 12 C. 6 D. 2
解1:找准题中两个量,一个是人数,一个是月份,把人数当作“苹果”,把月份当作“抽屉”,那么问题就变成:13个苹果放12个抽屉里,那么至少有一个抽屉里放两个苹果。「已知苹果和抽屉,用“抽屉原理1”」
例2:某班参加一次数学竞赛,试卷满分是30分。为保证有2人的得分一样,该班至少得有几人参赛?( )
A. 30 B. 31 C. 32 D. 33
解2:毫无疑问,参赛总人数可作“苹果”,这里需要找“抽屉”,使找到的“抽屉”满足:总人数放进去之后,保证有1个“抽屉”里,有2人。仔细分析题目,“抽屉”当然是得分,满分是30分,则一个人可能的得分有31种情况(从0分到30分),所以“苹果”数应该是31+1=32.「已知苹果和抽屉,用“抽屉原理2”」
例3. 在某校数学乐园中,五年级学生共有400人,年龄的与年龄最小的相差不到1岁,我们不用去查看学生的出生日期,就可断定在这400个学生中至少有两个是同年同月同日出生的,你知道为什么吗?
解3:因为年龄的与年龄最小的相差不到1岁,所以这400名学生出生的日期总数不会超过366天,把400名学生看作400个苹果,366天看作是366个抽屉,(若两名学生是同一天出生的,则让他们进入同一个抽屉,否则进入不同的抽屉)由“抽屉原则2”知“无论怎么放这400个苹果,一定能找到一个抽屉,它里面至少有2(400÷366=1……1,1+1=2)个苹果”。即:一定能找到2个学生,他们是同年同月同日出生的。
例4:有红色、白色、黑色的筷子各10根混放在一起。如果让你闭上眼睛去摸,(1)你至少要摸出几根才敢保证至少有两根筷子是同色的?为什么?(2)至少拿几根,才能保证有两双同色的筷子,为什么?
解4:把3种颜色的筷子当作3个抽屉。则:
(1)根据“抽屉原理1”,至少拿4根筷子,才能保证有2根同色筷子;(2)从最特殊的情况想起,假定3种颜色的筷子各拿了3根,也就是在3个“抽屉”里各拿了3根筷子,不管在哪个“抽屉”里再拿1根筷子,就有4根筷子是同色的,所以一次至少应拿出3×3+1=10(根)筷子,就能保证有4根筷子同色。
例5. 证明在任意的37人中,至少有4人的属相相同。
解5:将37人看作37个苹果,12个属相看作是12个抽屉,由“抽屉原理2”知,“无论怎么放一定能找到一个抽屉,它里面至少有4个苹果”。即在任意的37人中,至少有4(37÷12=3……1,3+1=4)人属相相同。
例6:某班有个小书架,40个同学可以任意借阅,试问小书架上至少要有多少本书,才能保证至少有1个同学能借到2本或2本以上的书?
分析:从问题“有1个同学能借到2本或2本以上的书”我们想到,此话对应于“有一个抽屉里面有2个或2个以上的苹果”。所以我们应将40个同学看作40个抽屉,将书本看作苹果,如某个同学借到了书,就相当于将这个苹果放到了他的抽屉中。
解6:将40个同学看作40个抽屉,书看作是苹果,由“抽屉原理1”知:要保证有一个抽屉中至少有2个苹果,苹果数应至少为40+1=41(个)。即:小书架上至少要有41本书。
下面我们来看两道国考真题:
例7:(国家公务员考试2004年B类第48题的珠子问题):
有红、黄、蓝、白珠子各10粒,装在一个袋子里,为了保证摸出的珠子有两颗颜色
相同,应至少摸出几粒?( )
A.3 B.4 C.5 D.6
解7:把珠子当成“苹果”,一共有10个,则珠子的颜色可以当作“抽屉”,为保证
摸出的珠子有2颗颜色一样,我们假设每次摸出的分别都放在不同的“抽屉”里,摸了4
个颜色不同的珠子之后,所有“抽屉”里都各有一个,这时候再任意摸1个,则一定有
一个“抽屉”有2颗,也就是有2颗珠子颜色一样。答案选C.
例8:(国家公务员考试2007年第49题的扑克牌问题):
从一副完整的扑克牌中,至少抽出( )张牌,才能保证至少6张牌的花色相同?
A.21 B.22 C.23 D.24
解8:完整的扑克牌有54张,看成54个“苹果”,抽屉就是6个(黑桃、红桃、梅花、方块、大王、小王),为保证有6张花色一样,我们假设现在前4个“抽屉”里各放了5张,后两个“抽屉”里各放了1张,这时候再任意抽取1张牌,那么前4个“抽屉”里必然有1个“抽屉”里有6张花色一样。答案选C.
归纳小结:解抽屉问题,最关键的是要找到谁为“苹果”,谁为“抽屉”,再结合两个原理进行相应分析。可以看出来,并不是每一个类似问题的“抽屉”都很明显,有时候“抽屉”需要我们构造,这个“抽屉”可以是日期、扑克牌、考试分数、年龄、书架等等变化的量,但是整体的出题模式不会超出这个范围。
学生排队,士兵列队,横着排叫做行,竖着排叫做列。如果行数与列数都相等,则正好排成一个正方形,这种图形就叫方队,也叫做方阵(亦叫乘方问题)。
核心公式:
1.方阵总人数=最外层每边人数的平方(方阵问题的核心)
2.方阵最外层每边人数=(方阵最外层总人数÷4)+1
3.方阵外一层总人数比内一层总人数多2
4.去掉一行、一列的总人数=去掉的每边人数×2-1
例1 学校学生排成一个方阵,最外层的人数是60人,问这个方阵共有学生多少人?
A.256人 B.250人 C.225人 D.196人 (2002年A类真题)
解析:方阵问题的核心是求最外层每边人数。
根据四周人数和每边人数的关系可以知:
每边人数=四周人数÷4+1,可以求出方阵最外层每边人数,那么整个方阵队列的总人数就可以求了。
方阵最外层每边人数:60÷4+1=16(人)
整个方阵共有学生人数:16×16=256(人)。
所以,正确答案为A。
例2 参加中学生运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少33人。问参加团体操表演的运动员有多少人?
分析 如下图表示的是一个五行五列的正方形队列。从图中可以看出正方形的每行、每列人数相等;最外层每边人数是5,去一行、一列则一共要去9人,因而我们可以得到如下公式:
去掉一行、一列的总人数=去掉的每边人数×2-1
· · · · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·
解析:方阵问题的核心是求最外层每边人数。
原题中去掉一行、一列的人数是33,则去掉的一行(或一列)人数=(33+1)÷2=17
方阵的总人数为最外层每边人数的平方,所以总人数为17×17=289(人)
下面几道习题供大家练习:
1. 小红把平时节省下来的全部五分硬币先围成个正三角形,正好用完,后来又改围成一个正方形,也正好用完。如果正方形的每条边比三角形的每条边少用5枚硬币,则小红所有五分硬币的总价值是:
A.1元 B.2元 C.3元 D.4元 (2005年中央真题)
2. 某仪仗队排成方阵,第一次排列若干人,结果多余100人;第二次比第一次每行、每列都增加3人,又少29人。仪仗队总人数为多少?
答案:1.C 2. 500人
标签: 行测3000问_公务员考试行测数学运算解题方法之方阵问题
相关文章